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ABSTRACT

The problem of aiming control is formulated as the problem of residence time
controllability in dynamical systems with stochastic perturbations. The solution is
given for linear systems with small, additive, white noise perturbation. It is shown
that the existence of the desired aiming controller depends on the relationship between
the column spaces of the control and noise matrices. If the former includes the latter,
any precision of aiming is possible. If this inclusion does not occur, the precision is
bounded, and we give lower and upper estimates of this bound. For each of these
cases, aiming controller design techniques are suggested and illustrative examples are
considered. The development is based on an asymptotic version of the large devia-
tions theory.
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SL THE PROBLEM

Given a controlled dynamical system with states x(t)e MR, control u(t) em

and disturbances 4(t) eR r , we define the aiming process specifications as a pair

I Ifl, Iwhere c1 " is the domain to which the states x(t) should be confined and v

i is the period of the confinement, i.e., x (t) e Q, V t e [to,to+], t0 e i+.

For example, in the problem of telescope pointing [1], the domain 11 is defined

by the size of the film grain, and t is defined by the time of the exposure. In the laser

3 beam pointing problem (2], 1 is defined by the cross-section of the beam and the size

of the target, whereas t is defined by the duration of the pulse. In the gun pointing

problem [31, 1 is defined by the size of the target and the power of the explosives,

3 whereas T is defined by the incidence time, i.e., time during which the shell travels in

the barrel. In the robot arm pointing problem [4], 0 is defined by the relative sizes of

the gripper and the object to be manipulated, and r is defined by the duration of the

Itask. In the aircraft landing problem [5], 0 is defined by the parameters of the air-

craft and the touchdown area, whereas t is defined by the landing period. In the mis-

sile terminal guidance problem (6], Q is defined by the domain to which the line of

I sight rate should be confined, and t is the period of the intercept.

I Given a pair fftJ, the problem of aiming control is formulated as the problem

of choosing a feedback control law, so as to force the states x to remain, at least on

the average, in 0 during period t, in spite of the disturbances k(t) that are acting on

3 the system.
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Modem control theory does not offer tools for a direct solution of this problem.

Indirect approaches, such as pole placement, LQG design, covariance control, H 2 and

H.. minimization techniques do not seem to give explicit relationships with the

residence time. Therefore, given a relative importance of pointing problems in modern

technology, the development of a control theory for aiming processes seems desirable.

In this paper such a theory is developed for linear systems with small, additive,

stochastic perubations under the assumption that all states are available for control

and the control law is of the form u = Ax. Results on output feedback will be con-

sidered in the sequel.

The approach developed in this paper is based on the first passage time theory for

dynamical systems with random perturbations. Although the f of this

theory have been known for a long time [7]. only in recent years a powerful, construc-

tive, asymptotic technique for residence time evaluation has been developed [81, [9].

However, with the exception of [101 and [11J where the stochastic stability problem

was addressed, no control-theoretic properties of the residence time have been investi-

gated, and no applications to controller design have been reported.

In the present paper, we apply the ideas and results of [71-[9] to analysis of con-

trollability properties of the residence time. Specifically, we show that the existence of

the desired aiming controller depends on the relationship between the column spaces

of the control and noise matrices. If the former includes the latter, any precision of

aiming is possible (strong residence time controllability case). If this inclusion does

not occur, the achievable precision is always bounded, and we give lower and upper

24



U
I
3 estimates of this bound (weak residence time controllability case). For each, strong

and weak residence time controllability, we give design techniques for aiming controll-

ers. These techniques have a peculiarity that they may result in closed loop poles

3 approaching the imaginary axis to ensure the largest possible residence time. This

counter-intuitive behavior is explained on the basis of stable pole-zero cancellations in

an auxiliary transfer matrix that characterizes the effect of the noise and its derivatives

on the residence time.

J The structure of the paper is as follows: in Section I mathematical preliminaries

are presented, in Section III controUllability properties of the residence time are

described, Sections IV and V are devoted to aiming controller designs, and in Section

VI conclusions are formulated; the proofs are given in Appendices 1-3.

- 11. PRELIMINARIES

3 Although the control technique discussed in this paper is presented for linear sys-

tems, the mathematical theory on which it is based applies to nonlinear systems as

well. Since this theory is not widely known within the control community, we will

I areview it briefly as it applies to nonlinear systems and then prove some new results

i that will be used in the subsequent sections.

Let Q Rn be a bounded domain containing x = 0 in its interior and let af be

its boundary, which is assumed to be smooth. Consider the following stochastic

3differential equation

dx =f (x)dt + W(x)dw , x(O) =  xo a 1, (2.1)

3



where xe R, f :JR-*I a: -*JRn O< Z<<cIandw .lr is anr -

dimensional standard Brownian motion. Assume f (- and a(-) satisfy the Lipschitz

and growth conditions [12]:

1If (x)-f (Y) II + I I (x)-O(y)II : ~kI I x-yII , x'y eIR"

Ilf (X)II + IIO(X)II :5k(l+IIX 11) , ' G~ MIR

Then the solution, x(t), of (2.1) is well defined and is a Markov process on XR with

the following infinitesimnal generator [91:

L ifA)a + 2 aij(x)- - 22

I ml I j= ixj(2)

Assume that 0 is an asymptotically stable equilibrium point of x f 1(x) in Q,

and assumne that fl contains no other up-limit sets of x f 1(x). It is indicated in (7)

that if (O) *0, then x(t )leaves Q in fnite time with probability one for all xOe Q~.

The mean of the first time of exit of x(t) from Ql, i.e.,

is shown in [M-[9J to satisfy the following boundary value problem

LT(o Ix 0 ea . (2.3)

In general it is difficult, or impossible, to find an exact solution of (2.3). How-

ever, for sufficiently small e, asymptotic solution methods have been developed (see

[81,[91). These methods not only give an approximate value of Y'(x0 ) but also show

that, roughly speaking, T '(xo) t - cons: for all xO in 11 outside of a boundaty layer

4
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3 around afl. The value of i is referred to as the residence time in Ql. More precise

statements in this regard are given below.

Assume that f (x) and a(x) are twice continuously differentiable in fl. Further-

5 more, assume that f (x) and a(x) satisfy the following conditions:

(i) For some constant a > 0,

i~j=1i i:=l

(ii) If x =f (x), x (0) e Q, then x (t) -+ 0 as t--o. Furthermore, the Jacobian of

f(x)atx =OisHurwitz.

(iii) If n(x) is the outward normal of -o, then fT(x)n(x) < 0 for all x e a.

I Conditions (ii) and (iii) imply that Q is an invariant set of x =f(x) with the

maximal o-limit set fx = 0).

Assume that the first order partial differential equation

A,+ 0 (2.4)

#(o) =f o,

Ihas a strictly positive definite solution in d (the closure of f) and define the loga-

3-- rithmic residence time in fl by

1() = inf (x) (2.5)

The following theorem was proven in [9].

- Theorem 2.1: Assume that (i) - (iii) hold. ThenI'



lim E21nfftl :o) = () (2.6)

uniformly on compact subsets of Q.

Theorem 2.1 states, in particular, that

-f4Xo) = C ()e ( )ik(l + o(1)) as e -- 0

If a more precise estimate of T 6(xo) than the logarithmic residence time, (1),

given by Theorem 2.1 is desired, the preexponential factor C (e) can be obtained using

the methods of [81. Indeed, let z (x) be the solution to the equation

b .b (x) a- + c(x)z =0 (

i=l (2.7)

z(O)= 1

where

bc4x) =- 2 a(x)-t -i'x)

i-1 1 ax aiju

Then it can be proven [13] that C(s) satisfies

C(E) = a (I+o(I))=Cj(eXI+o(1)). (2.8)
fe( - *(x)1/e2z(xXfT(x)n(x))dSx

Since (2.6) and (2.8) are asymptotic in nature, it is of interest to evaluate the

range of e's for which the constant v(2)C is indeed close to

T 8(xo), xo e Q. Although a theoretical (extremely concervative) estimate can be

derived, to illustrate the situation we give here the following example.

6
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3 IExample 2.1: Consider a scalar system

dx = f (x)dt + edw , x (0) = Xo e (-1, 1) . (2.9)

For this system, (2.3) becomes a two point boundary value problem

-8 2 d2- -1 ,( 1)fd(x)" + 2  (2.10)
~T6(-I) = Te-(1) = 0.

We divide the analysis into two parts. First we evaluate qualitively for which

values of e function iT(xo) converges to a constant in the interval (-1, 1) (excluding a

small boundary layer), and second we will investigate how close this constant is to the

one given in Theorem 2.1.

We consider two cases: f (x) = -x and f (x) = -x 3. Even in these simplest situa-

tions, it is difficult to find an exact solution for T e(xo). Thus we solved the two point

boundary value problem (2.10) numerically for various values of e. In Figures 2.1 and

2.2 the solutions are plotted for several values of e. As it follows from these Figures,

f'e(x o) is a "constant" in the interval (-1, 1), if e T 1/3 and E < 1/4 for f(x) = -x

and f (X)= -x 3, respectively.

To evaluate quantitively the accuracy of the approximation given by Theorem 2.1,

we first solve (2.4) for f (x) = -x and f (x) = -x 3 and calculate the logarithmic

residence time (2.5). A simple calculation shows that #(x) = x 2 and ; = I for

S. ff(x)=-x and #(x)= x4/2 and *= 1/2 for f(x)=-x 3. In Figures 2.3 and 2.4 we

have plotted I(e) = I(e 2 In ft(0) - ;)/;I for the two cases. As it follows from these

Figures, the approximation is indeed very good: the maximum error is about 13%

(e=1/3) and 6% (e = 1/4) for f(x) = -x andf(x) = -x3 , respectively.

7



Finally, we illustrate the calculation of C(E). If f (x) = -x, then z(x) = 1. As it

was shown in [8], the integrals appearing in (2.8) can be evaluated by Laplace method

in the limit of e--+O. This gives (see [8] for details)

C () = -'x- (1 + 0(1)) = (1 + o(1))
4

Define

.(2.11)

where

(a) = C(e') e ( ' /

In Figure 2.5 we have plotted r(e) as a function of e in the range (1/10, 1/3). It fol-

lows from this figure that if(fI) gives a very accurate estimate of T(0) in the whole

range, with a maximum error of about 7% at e = 1/3.

Remark 2.1: In a recent paper [14], a comparison of the logarithmic residence

time 4(fl) with the experimental data, obtained by simulating a stochastic system large

number of times, has been carried out. This study revealed that, for the second order

nonlinear system under investigation, ;(al) gives a very good estimate of E2 in T6 (0)

for even larger values of e (e = 0.6 - 0.8 with 10% error). However, in the simula-

tions reported in [14] the initial point x(0) = xo was selected to belong to a small

neighborhood of zero and no qualitative analysis has been carried out. Therefore, the

results in [14] can only be interpreted as how well V(l) estimates the logarithmic first

passage time from 0, i.e., e21nTe(0), and nothing can be inferred about the relationship

between (Q) and T2 n ?(Xo) , x 0 e Q. For instance, in Figure 2.6 we have plotted

8
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I(e) for f(x) =-x 3 in the interval (0.1, 0.8). It follows from this figure that for

e = 0.71 , (f) is an estimate of O21nV'(0) with 0.4% accuracy. However, for this

value of C, Te(x0 ) is not nearly a constant in the interval (-1, 1) as is shown in Figure

2.7 and, therefore, the theory of [8], [9] is not applicable.

In the case of linear systems, the results presented above can be generalized in

two directions: first of all equations (2.4) and (2.7) can be solved explicitly and,

I secondly and more importantly, condition (i) can be weakened considerably to allow

3 for a larger class of noisy systems to be considered. Indeed, consider the equation

dx = Axdt + eCdw (2.12)

and assume that

W(i') the pair (A ,C) is completely disturbable, i.e., rank

[C lAC I ... IA"-IC] n;

(iii) A is Huwitz;

(iii') if n (x) is the outward normal of al, then (Ax)Tn (x) < 0 for all x q aQ.

I Theorem 2.2: Assume that (i') and (ii') hold. Then (x) and z(x) are given by

¢x) =-xMx,

2 (2.13)

3 z(x) 1 ,

where M = X- 1 and X is the unique positive definite solution to

AX+XAT+CCT=0 (2.14)

I Proo: See Appendix 1.

I
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Theorem 2.3: Assume that (2.12) satisfies conditions (i)(i'.Then (2.6) holds

with 4D) defined by (2.5) and (2.13).

Proof: See Appendix 1.

The theory described above constitutes the mathematical foundation for the

residence time controllability analysis and the aiming control design techniques

presented in the subsequent sections.

III. CONTROLLABILITY OF THE RESIDENCE TIME

Consider now a linear, stochastic system with control n e fi

dx = (Ax + Bu A + eCdw , x (0) =x 0 E eQ . (3.1)

Let u = Kx and let Yf6(xo0 K) be the mean first exit time of the closed loop sys-

tem

dx =(A +BK)xdt+ eCdw ,x(O) =x 0 e 0, (3.2)

from the domain Q.

Assume we want to select the controller K such that iT (x0 ,K) 2! T for some

prescribed T >O0and aI x 0E e U where Ill is a subset of 12 which does not containI any boundary points of 11.
Consider the alternative problem of selecting VQflK) >~ where 4i(QlK) is given

by

#(QK)= if 2 xTM(K)x

10



M (K)(A + BK) +(A + BK)T M(K) +M (K )CCTM(K) =0

and *> 0 is some prescribed constant. Then if system (3.2) satisfies the assumptions

of Theorem 2.3 we have

where e (Ex 0 K) -+ 0 as e--* 0 uniformly for xO belonging to compact subsets of Ql.

Thus, since by the choice of K we have4(flK) - +>0, there exists an F0 >O0such

that for all 0 < e :5 e0 we have

E 2 1 (X0 K) - ;*QK) - # + e (er0 ,K) Z 0

or equivalently,

iT (x,A) ! Ol : e

for all x0 e ill. Therefore, if the noise intensity, E, of system (3.2) is less than eo the

choice * = E21nT guaranteesT e(x0 ,K) a T, x0 e Il

Motivated by the above considerations we introduce the following definitions.

Definition 3.1: System (3.1) is said to be weakly residence time controllable

(wit-controllable) if for any bounded 0 aR'3 with 0 in its interior, there exists a con-

6trol u = Kx such that;(QK) >0.

Definition 3.2: System (3.1) is said to be strongly residence time controllable

(sit-controllable) if for any bounded Q (cMRn (0e Ql) and any *>o0 there exists

u = Kx such that (QK) Z:

In the remainder of the paper we assume that system (3.1) does not contain any

modes that are both uncontrollable and undisturbable (see, however, Remark 3.2

below).

11 LA



Theorem 3.1: System (3.1) is wrt-controllable if and only if (A B) is stabilizable.

Proof: See Appendix 2.

Theorem 3.2: System (3.1) is srt-controllable if and only if (A B) is stabilizable

and ImC g ImB.

Proof: See Appendix 2.

For any wrt-controllable system there exists a maximal constant #* (() such that

any logarithmic residence time flK) < #* (f0) is realizable by a choice of K. The

constant )* (fD), referred to as maximum achievable precision of aiming, can be charac-

terized as follows: Let Qy be the positive definite solution of the Ricatti equation

ATQ + Q.4+ I -1 BQT= 0 y> 0 (3.3)
A-

and define KY and X. by

S-(3.4)

(A +BK)X + X(A +BK) r + CC T 0 (3.5)

Let TrXo = limTrX, (this limit exists since TrX , is nonincreasing and bounded below

as -+ 0 [15) and inf = ,.(X,).

Theorem 3.3: Let r rin fix I, R = max lix II, X = n/TrXo and X2 f l/4.
X~aQ XeaO

Then

2 - 2

12



Proof: See Appendix 2.

Remark 3.1: To obtain the lower bound 41(0), the computation of X. for a

sequence of y's converging to zero is necessary. A simpler but more conservative

3 lower bound of ,* (4) is

r
2

Evaluation of a sufficiently accurate estimate of # and #, requires only the solution

of (3.3), (3.5) for one small value of y.

Remark 3.2: If system (3.1) does have modes that are both uncontrollable and

undisturbable, then by a change of coordinates, x = P' ', it can be reduced to the form:

where the deterministic subsystem, Tr2 = A'22F2, contains the uncontrollable, undisturb-

able part of the system. In this case we would consider the aiming control problem

for the lower dimensional system (A1 li8Cl) in the bounded domain

l1 = IxIP-"e £1 and for which Theorems 3.1 - 3.3 apply.

IV. CONTROLLER DESIGN A: SRT.CONTROLLABILITY CASEI
Consider again (3.1) and assume that either wrt- or srt-controllability takes place.

Then with a control u0 = Ko x , which renders (3.1) stable and (A + BKo,C) disturb-

able, the logarithmic residence time of the closed loop system

dx =A oxdt + eCdw , Ao = A +BK o  (4.1)

in a bounded domain l(=" is given by

13



(flK) = inf4(4) = inf-'x TmoC

A;M0 +M& 0 0 + M0CC TM 0  (4.2)

This residence time can be increased (or, more generally, changed) by an

appropriate modification of KO. The modification, however, depends on whether sit-

or wrt-controilability takes place. In this section the former is addressed.

Theorem 4.1: Assume that system (3.1) is srt-controilable. Then the control

Ua = (KO - -7-1HCTMO)X A-Kax (4.3)

where H is given by C = BH, applied to (3. 1) results in a logarithmic residence time

in Q) given by

Proof: Follows directly fromm the sufficiency part of the proof of Theorem 3.2.

From Theorem 4.1 we obtain:

Design Procedure 4.1: (i) Select KO such that A0 = A + BK 0 is Hurwitz and

(A0 ,C) is completely disturbable. Calculate MO and j(flK) given by (4.2).

(ii ) For any desired logarithmic residence time #> 0 calculateIL = K
With K" = K0 - HCTMO the closed loop system dx = (A +BKa)xdt + eCdw hasI logarithmic residence time (flKa)

It is of interest to investigate the location of the closed loop poles defined by

residence time controller (4.3). For this purpose, introduce an r xr transfer matrix

14
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Go(s) = CTMo(sI - Ao)-C (4.4)

where Mo is defined by (4.2). Assume that C has full rank (to avoid trivial situations)

and define

detGo(s) = Z(s)det°(s -- det(s/- Ao) (4.5)

Let zj,. . . zp, p < n, be the zeroes of Z(s).

Theorem 4.2: As a -+ -. , p closed loop poles of

dx = (A + B(K o - -I- 2 HCT Mo))xdt + eCdw (4.6)
* 2

converge to zeroes of Z(s) while the remaining n - p poles converge to .

Proof: See Appendix 3.

Theorem 4.2 states, in particular. that a feedback which ensures a very large

residence time may place the closed loop poles arbitrarily close to the imaginay axis

if Z(s) has purely imaginary zeroes. The explanation of this counter-intuitive

phenomenon is the following: Each zero of detGo(s) corresponds to a differentiation

of the external input, i.e., noise. The derivatives of white noise have a very strong dis-

turbing power. That is why it is advantageous to place the closed loop poles so that

I the zeroes of Go(s) are cancelled.

I Example 4.1: Consider system (3.1) with

A [0 0 1I B]=C [00= 0 0 1 ,0- -

a Clearly (A ,B ,C) is completely controllable and disturbable and ImC = ImB. There-

fore, conditions of Theorems 3.2 and 4.1 are satisfied and a controller of the form (4.3)

15



can be employed to obtain any desired residence time. Choosing

Ko [-, -1,. -21

results in

[2021
Mo= 0 2 0

1 04J

and

GO(s) =CTMO(sl - (A + BKo))-i C

4(1+2s 2)

s 3 +2s 2+s+l

Therefore, controller (4.3) becomes

Ka K -- HCT- 0-=2[ -o, a l, - 2a]
2

By Theorem 4.2, as a -. -, two of the closed loop poles converge to the zeroes of

Go(s) at s = *j2/2, while the third pole converges to - ee. Furthermore,

(B (0, MKa) is a linear function of a, #^ = 0.382c.

V. CONTROLLER DESIGN B: SRT/WRT-CONTROLLABILITY CASE

When ImC C ImB, the residence time contoiler design is not as simple as in

Theorem 4.1. One possible approach is to generalize Design Procedure 4.1 in an itera-

tive manner. However, this approach is inferior to the approach presented below and

will not be pursued here. Our second approach for the design of an aiming controller

is based on the Ricani equation (3.3). As before, we select an initial control

uo = Kox. Define a controller

16
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uT=Kx = (Ko -- BTQY)x , y>O , (5.1)

fu where Q. is the positive definite solution of

A1Qy+QyAo+I--QyBBTQY=O (5.2)

The logarithmic residence time of system (3.1) with the stabilizing control (5.1) in a
I bounded Q cff n is given by

xE 'K ') = inf I x Mj (5.3)Xrta 2

where

(A+BKT)TM T +MA+B T) +MYCCTM f=O (5.4)

Theorem 5.1: Assume (AB) is stabilizable. Then

(a) if Q ,then flK) -+ .. asY-+O;

(b) if hnC g ImB, then ((a,K') lies between the upper and lower bounds

of Theorem 3.3.

Proof: See Appendix 3.

Remark 5.1: It follows from the proof of Theorem 3.3 that for each y > 0,

2Tr.K.

Furthermore, 2rX is nondecreasing as y --* 0 and, thus, is a good lower estimate for

design purposes.

Theorem 5.1 suggests the following:

17



Design Procedure 5. 1: (i) Select K0 such that (A + BKoC ) is a disturbable pair.

(ii) For a given logarithmic residence time 0 < # < *1 (Q) iteratively find a y > 0

such that (K.) I-

Remark 5.2: The above design procedure involves a solution of a quadratic

(Ricani) matrix equation. For high order systems the computational effort may be

considerable at each iteration. On the other hand, the design procedure outlined in

Section IV involves only the solution of one Liapunov equation and, hence, the com-

putational effort is considerably less.

The asymptotic analysis as y -+ 0 of the poles of the closed loop system

dx = (A + BK +dt eCdw (5.5)

can be carried out in a similar manner as in Section IV. Indeed, it is shown in [151

that as y-. 0,

If a Tg Q~-+ B T7 * 0

Therefore, a simple analysis of det(sI - A - BKT) shows that the closed loop poles

that remain finite as y -+ 0 converge to the zeroes of the m x m transfer matrix

G(s) = BT Q(s1 - Ao)-B (5.6)

Example 5.1: Design Procedure 5.1 (DPS.I) was used to design a controller for

the system in Example 4.1. In Fig. 5.1 the logarithmic residence times of the result-

ing closed loop systems are compared as a function of control effort, II K II. The plots

reveal that DP5. 1 results in a larger residence time for a given control effort as com-

pared with DP4. 1. However, bearing in mind that DP4.l is a one step procedure, it is

r1
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clear that in many cases the computational advantage may be considerable.

It is easily checked that

lirn -B TQY = BTQ [0.456, 0.7899, 0.4561

Therefore, as y -+ 0, two of the closed loop poles of system (5.5) converge to the

zeroes of (5.6),

G (s) = B TQ(sI-Aol)-B = 0.456s2+0.7899s+0.456

s3 +2S 2 +S+1

located at s =- 31/2±j 1/2, while the third pole converges to --. There is an

interesting difference between the two designs in this respect, i.e., to approach an

infinite residence time DP 4.1 results in closed loop poles approaching the imaginary

axis, whereas DP 5.1 results in poles that have strictly negative real pans.

Example 5.2: Consider the problem of designing a rol attitude regulator for a

missile disturbed by random torques. A simple linearized model for the system is [161

[,j 0 01[1 f1 0[1IU+d L e, (5.7)

where 8 is the aileron deflection, (o is the roll angular velocity, # is the roll angle, u is

a command signal to aileron actuators and w is white noise.

, Clearly ImC : ImB and (A ,B) is controllable. Therefore, system (5.7) is wzt-

controllable and #* (11) is estimated using Theorem 3.3 to satisfy

5.36r2 S * (j) : 15R 2

L'9



In [16] a covariance control approach was used to design a controller for (5.7).

The design specifications were

E 8 --- Eo1 1 V-,-E- E52 <
1150 ' 1150 1150

and the resulting controller

u = - 14.5658 - 24.43(0 - 68.57+ (5.8)

The logarithmic residence time of the closed loop system with control (5.8) in the ball

B (0,'2) is calculated to be j = 6.94.

A residence time controller was designed using Design Procedure 5.1 with a start-

ing value Ko = [- 3, - 6, - 4]. The following results are of importance:

(a) A controller which results in the same logarithmic residence time in B (0,',)

as (5.8) is

u f - 4.9128 - 6.580o) - 4.823#

We note that this controller uses much less control effort than (5.8).

(b) A controller that uses about the same control effort as (5.8) is

u = - 42.198 - 42.28(o - 40.31#

However, the closed loop system with this control has logarithmic residence time in

B (0,2) of ; = 10.19. The largest achievable logarithmic residence time in B(0,Th)

using Design Procedure 5.1 is exactly the lower bound of #* (Q) calculated above with

r = 2. When this bound is approached, two closed loop poles of system (5.5) con-

verge to zeroes of
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=BT 46, O~s s 0.6s1)11+0
S p (s)

G(s) f (si-Ao-B [0.46 0.46 0.6 1s - 0.46.s_+lls+10)
p(s) S+7s2 +116s +80

-'!" 10

p (S)

located at s = -1, - 10, while the third closed loop pole converges to infinity.

VI. CONCLUSIONS

In this paper, a new problem of aiming control is formulated and solved for linear

systems with small additive white noise. A generalization for wide-band noise

processes is straightforward (using the techniques of [17]) and does not change the

mconclusions of this paper.

Among these conclusions, the following are of prime importance: The properties

of the aiming controllers strongly depend on the relationship between the column

spaces of the control and noise matrices. If the former includes the latter, any preci-

sion of aiming is achievable and the desired controller can be obtained in a one step

procedure. If this inclusion does not occur, the achievable precision is limited and an

aiming controller is designed by an iterative procedure.

The main advantage of the developed approach is that it is based directly on aim-

ing process specifications and does not involve an informal choice of any parameter

(poles, weighting matrices or covariances, for example).

The results presented in this paper may also be viewed from a perspective of sto-

chastic system stability. Indeed, stability in moments, probability or almost surely

21



does not exclude large deviations of the state vector from the equilibrium point.

Therefore, controllers designed in this paper may be viewed as mechanisms for ensur-

ing certain types of stochastic stability along with guaranteeing a desired residence

time.

ACKNOWLEDGEMENT

Numerous stimulating and productive discussions with Natarajan

Narasimhamurthi of the University of Michigan, Zeev Schuss of Tel Aviv University

and Bob Skelton of Purdue are gratefully acknowledged. Their assistance and advice

contributed considerably to this work. In addition, extensive and constructive com-

ments of anonimous reviewers are greatly appreciated.

APPENDIX I

Proof of Theorem 2.2: In this case equation (2.4) becomes

[T]T

-10,
, (AI.I)

+(0) = 0

We have to show that 4Vx) given by (2.13) satisfies (AI.1), i.e.,

X T(MA + 2 MCCTM)X = 0 (AI.2)

2

Since (A ,C) is disturbable and A is Hurwitz, (2.14) has a unique positive definite

solution X. Let M = X- ' and rewrite (2.14) in terms of M

MA +A TM + MCCTM = 0

22



or

M(A +-2CCTM) + (A +- jCCTM)TM 0 (A1.3)
2 2

(AI.3) shows that the matrix M(A +- CCTM) is skew symmetric which in turn
2

implies that (AI.2) holds.

Next we show that z (x) a 1. Equation (2.7) now becomes

(CCTMx + Ax)j + (ITr(CCTM) + TrA)z = 0 (AI,4)
a)x 2

3 Let S be a unitary transformation that diagonalizes M. Let A = STAS, M = STMS,

D = STCCTS. Then we have

0=(MA +ATM+MCCTM)=(A +jTM + jD )

This implies that 2A&d a, + md, O,= , i 0 1 • •,n. Therefore

(a. + - j ,dof 2 0(AI.S)ail

Equation (A 1.5) can equivalently be written as

0 =Tr(A +j DMf)= Tr(A +.! CCTM)
2 2

3 which in turn implies that (AI.4) becomes

(CCTMx+ Ax)T " i =0 (AI.6)I ax
Thus, z (x) *1 is a solution to (A 1.6) which satisfies the boundary conditions.

Q.E.D!
Proof of Theorem 2.3: By assumptions (i') and (ii') x(t), the solution to (2.12),

I has a transition probability density [181
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pI(t,x ,y ) =e ,2 (AI.7)

(2e2)n' 2(detX (t))/ 2

where

0(t ,x,y) = (y-e~Ax)TXl(t )(y - e A x)

2

X(t) = Je CCTeArsds
0

Furthermore, X =limX (t) satisfies (2.14). Let

P(txA) = Jp'(txy)dy
A

be the transition function for x(t) and let A be a subset of aQ and 0 < 8 -cl be given.

Define a set Wa to consist of points y such that y lies on the normal n(y) for some

y e A and such that the distance from y to y is less than or equal to 8. Now, by

Lemma 4 in [19] we have

If P (, txo,dy)fP (s ,y,WA)dS = P (W age(xo) + O(e- l/') , (Al.8)
0

where

P (WA) =-lim P (to,WA) I
= f pv(y)dy

and

p I(y) 13
(2Xz2),,2(detX)1/2 e

where #(y) is given by (2.13). Choose A=af, then each ye afl belongs to i
W = Wa and therefore I
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I

P (OyW) = 1

Using assumption (iii'), the continuity of P (syW) and the exponential character of

p(t,x,y ) we have for some t > 0

P (s ,y,W) ? 1 - e

Therefore,

fP (s,,7W)ds 2> 1 - e 2-' >-e~
0 0

This gives

1

f P'(C ,xOdyXl + O&1Ill')) = I + 0(e-'I&)

Here, we have used the fact that since 't ' is an exit-time,

! a~lf P (T€ ex°dy) = I

Then we have from (AI.8)

1 = P (W)F'(xo) + 0(e- 1"") (AI.9)

Next we use Laplace method to evaluate P (W) in the limit as E -0*, i.e.,

P(W) = e (4 62C(C) (1 + o(1)) as e -+ 0 , (Al.O)

where C (C) is a constant depending on #(x) and the boundary dV. Furthermore, C (e)

grows not faster than e- as e -- 0. Whence, (2.6) follows directly from (AI.9) and

(A.LIO).

3 Q.E.D.
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APPENDIX 2

Proof of Theorem 3.1: For the necessity we note that with D = B(0,1) wrt-

controllability implies that there exists a control u = Kr such that

4(B(0,)K)=- Xm(M(K)) >0. Thus, M(K)> 0 and it folows from a standard
2

Liapunov theorem that (A +BK) is Hurwitz. To prove the sufficiency we first note that

it follows from the proof of Theorem 5 in [20] that there exists a stabilizing feedback

u 0 = Kox such that the closed loop system with this control is completely disturbable

(in fact, this is true for almost any stabilizing feedback matrix). Now the rest of the

proof follows directly from Theorem 2.3.

Q.E.D.

Proof of Theorem 3.2: We prove the necessity and sufficiency of the condition

ImC gImB.

Necessity: Let x b P be a change of coordinates which maps system (3.1) into

the form:

d [i x:] + [o]u )d + e d (21
where B I has full row rank. With a stabilizing control u =/K, the logarithmic

residence time of system (A2.1) is determined by M = -1 where X is the positive

definite solution of

(A iii) +X( + BK )T +CCT =0 .(A2.2)

Writing equation (A2.2) in a compatible block form with equation (A2.1) results in the

following equation for the (2,2) block
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I

+ a T12AT T 0 (A.3A2 1X2 +,, 22 + 2 2 A r +, 12 , 21 +C 2C2 --0

Fron (A2.3) we obtain

21, ,1TT +Xi22 T ,,a llC2Cl (A2.4)

which gives

2 112 2  1 [ 112 (2

2 212i22 II 11211 II

AT + 2 2 A 1))2 , hae (A2.()

which in tun implies that if C2  0.

I Therefore, the logarithmic residence time of systems (A2.1) in a bounded is

E bou,,,,dby,

ii

I)-2=(6 2

This completes the prooof the necesity.

Suffidency: The proof is by conatnction. Select a stabilizing control u o - oI such Thin (A + lKo,C) is disinable. Then stee closed loop system

bonedb



dx =(A + BKo)xdt + CCdw

has a logarithmic residence time in a bounded 11 given by

=Q O inf j x7.M(, (A2.6)

(A+BKjMo + M(A+oBK) + MOCC T MO =o (A2.7)

Define a feedback matrix K" by

K =K - -- HCTM o. a >0 , (A2.8)

where H is determined by the relationship C = BH. Then, if A + BKG is Hurwitz,

the closed loop system has logarithmic residence time in Q determined by

(A +BKa)TM + M(A +BKa) + MCCTM =0 (A2.9)

Substituting (A2.8) into (A2.9) and rearranging gives

(A+BKo)TM + M(A+BK O) + MCCTM

Cc IMCCTMo_-_ MoCCTM=0 (A2.10)

2 O2 0

A simple check shows that M = aM o is a positive definite solution of (A2.10) which

in turn implies that A+BK* is Hurwitz. Thus, the logarithmic residence time of the

closed loop system with control (A2.8) is

(flK-) = ctK 0 ) (A2.1l)

Furthermore, it follows from eq. (A2.11) that fa) - eo as a - .

Q.LD.

Proof of Theorem 3.3: It follows from the results of [151, [21] that for each

y > 0, K? defined by (3.4) is a stabilizing control and that for any other stabilizing K
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i

3 ~TrX#(l g2 Q vBTQ,) : TrX(KX + yKTK)
Y

(A + BK)X(K) + X(KXA+BK) r + CCT = o

Furthenrore, it is shown in [151 that TrX1 is a nnincreasing function of y as y - + 0

I and

liMTrX.-1+- Q QTg) = limTrX. = TrXo
r -40 Y 'V-40

Therefore, for ail stabilizing K,

TrX o : <TrX(K) (A2.12)

X,,(X)inf [),,,,(X (K)) I A + BK is Hurwitz] (A.13)

and note that, by the proof of Theorem 3.2, ) >0 when ImC it ImB. There-

fore, (A2.13) gives

o < ,=( ; o ,(A2.14)

Iand from (A2.12) we have

TrX 0 < TrX < nL.(i) (A2.15)

The residence time in Q for system (3. 1) with a stabilizing K is determined by

(f,)= inf !xTM(K)x
xaaa 2

(A+BK)TM(K) + M(KXA+BK) + M(K)CCTM(K) =0

I Therefore,

I )Z)- ),n.(M(K)) inf xx = - (M(K))

2 2d si (A2.14),

and, using (A2. 14),
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r 2  r 2  r 2)2 (A2.16)

2L.=(X) 2AC 2

Similarly, (A2.IS) gives

fl,):5 R 2  R 2  R 2;L (2.7

Finally, (3.6) follows from the bounds (A2.16) and (A2.17).

Q.E.D.
APPENDIX 3

Proof of Theorem 4.2: The characteristic equation of the closed loop system

(4.6) is

detOJ - A o + BHCT Mo) = 0 (M.1)

To siplify notation let and BH = C. Then (A3.) can rewritten as fol-
y 2

lows

0 = det(, - A0 + JCCTMo)

= det(X,, - Ao)det(I+ 1 CCTM O( )j , _Ao)l)Y 
(A3.2)

= det(XI, - Ao)det(lr + - CTMo()I,-Ao)- C)Y

= (i )'det(/, - Ao)det(y/r + Go()))

When y -+ 0 (Le., a - *.), p of the roots of (A3.2) converge to the zeroes of

0 = det(JI, - Ao)detGo()) = Z(.)

(for a proof see e.g. (221) and the remaining n - p roots converge to infinity.
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3 Q.E.D.

Proof of Theorem 5.1: To prove statemen (a) of the theorem assume, without

loss of generality, that B has the form

B , !- (A3.3)

where 8 1 has full row rank. Let lim Q = Qo (this limit exists becaume QT is a nonin-

creasing function of y as y --+ 0 [1S). Then Q0 saisfies (231

A4Q 0 +QO,4o+I~lin-jQ.,TQ,YmO (AM.)Soo -
The last term in (A3.4) when rewritten in a compatible block form with (A3.3) is

lim QBT Q

S QI B Q B, IQ 11 Q "BIBr 12  (A3.5)
l / ¥  T Y T 1 7

~~~~~~I 1OL(l2) ~i~ (Q 12)TBR~2Y YI I osnuY

liMTICTQC = limTrHT BT Q)B

=Tz(H T limfQ'BjHT=O

' 'r-00o

and the relations

5~~ ~~ TX(+!Q TQ.tYQCCT

a TICTQ 7 C
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X,.X.,:5TrX.,

imply that X..(Xy) -+ 0 as y -+ 0. Therefore, M -X ~ X. as y 0 which com-

pletes dhe proof of part (a).

The proof of (b) follows directly from the proof of Theorem 3.3.

Q.E.D.
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